CHAPTER VII AUXILIARY SYSTEMS #### **MAJOR PLANT SECTIONS** - A1. New Fuel Storage - A2. Spent Fuel Storage - A3. Spent Fuel Pool Cooling and Cleanup (PWR) - A4. Spent Fuel Pool Cooling and Cleanup (BWR) - A5. Suppression Pool Cleanup System (BWR) - B. Overhead Heavy Load and Light Load (Related to Refueling) Handling Systems - C1. Open-Cycle Cooling Water System (Service Water System) - C2. Closed-Cycle Cooling Water System - C3. Ultimate Heat Sink - D. Compressed Air System - E1. Chemical and Volume Control System (PWR) - E2. Standby Liquid Control System (BWR) - E3. Reactor Water Cleanup System (BWR) - E4. Shutdown Cooling System (Older BWR) - F1. Control Room Area Ventilation System - F2. Auxiliary and Radwaste Area Ventilation System - F3. Primary Containment Heating and Ventilation System - F4. Diesel Generator Building Ventilation System - G. Fire Protection - H1. Diesel Fuel Oil System - H2. Emergency Diesel Generator System - I. Carbon Steel Components (refined outline to be added when issued for public comment) **Explanation of September 30, 2004 changes in preliminary interim draft chapter outline and aging management review (AMR) tables**: Within the AMR tables, this update process increases license renewal review efficiency by: - Consolidating components (combining similar or equivalent components with matching materials, environment and AMP into a single line-item), - Increasing consistency between Material/Environment/Aging effects/aging management Program (MEAP) combinations between systems (some existing MEAPs had multiple definitions that, based on the aging effect, could be broadened to envelope these into a singe MEAP), - Correcting any inconsistencies in the 2001 edition of the GALL Report, - Updating references to the appropriate aging management programs, and - Incorporating line-item changes based on approved staff SER positions or interim staff guidance. The principal effect of this change is that the tables present the MEAP combinations at a higher level, and the prior detail within a structure or component line item is no longer explicitly presented. Consequently, the identifiers for subcomponents within a line item are no longer presented in the tables. As a result, the introductory listings of these subcomponents (originally in text preceding each table) have been deleted. The following AMR tables contain a revised "Item" column and a new column titled "Link", which was not contained in the July 2001 revision. The "Item" number is a unique identifier that is used for traceability and, as mentioned above, no longer presents the detailed subcomponent identification. The link identifies the original item in the current version of the GALL Report when applicable (items added to this list refer to bases statements not yet available). By January 30, 2005, the NRC staff plans to issue a revised GALL Report (NUREG-1801) and SRP-LR (NUREG-1800) for public comment. NRC anticipates re-numbering the line-items to provide an improved unique identifier as part of the public comment document. Also as part of the public comment process, the NRC will issue a NUREG documenting the basis for the proposed changes to the GALL Report and the SRP-LR. This NUREG bases document will be an aid for those reviewing the revised documents to understand what was changed and the basis for the proposed changes. #### A1. NEW FUEL STORAGE # Systems, Structures, and Components This section comprises those structures and components used for new fuel storage, and includes carbon steel new fuel storage racks located in the auxiliary building or the fuel handling building. The racks are exposed to the temperature and humidity in the auxiliary building. The racks are generally painted with a protective coating. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components used for new fuel storage are governed by Group C Quality Standards. Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. #### System Interfaces No other systems discussed in this report interface with those used for new fuel storage. | Item | Link | Structure
and/or
Component | Material | | Aging Effect/
Mechanism | Ading Management Program (AMP) | Further
Evaluation | |------|----------------|----------------------------------|----------|--------------|----------------------------|---|-----------------------| | A-94 | VII.A1.1-
a | Structural Steel | | uncontrolled | | Chapter XI.S6, "Structures Monitoring
Program" | No | #### **A2. SPENT FUEL STORAGE** # Systems, Structures, and Components This section comprises those structures and components used for spent fuel storage and include stainless steel spent fuel storage racks and neutron absorbing materials (e.g., Boraflex, Boral, or boron-steel sheets, if used) submerged in chemically treated oxygenated (BWR) or borated (PWR) water. The intended function of a spent fuel rack is to separate spent fuel assemblies. Boraflex sheets fastened to the storage cells provide for neutron absorption and help maintain subcriticality of spent fuel assemblies in the spent fuel pool. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components used for spent fuel storage are governed by Group C Quality Standards. In some plants, the Boraflex has been replaced by Boral or boron steel. Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. #### System Interfaces No other systems discussed in this report interface with those used for spent fuel storage. A-97 VII.A2.1- Spent fuel storage racks Storage racks - PWR | VII AUXILIARY SYSTEMS A2 Spent Fuel Storage | | | | | | | | | |---|------|--|-----------------------|------------------------------|---|--|------------------------|--| | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | | | A-87 | а | Spent fuel
storage racks
Neutron-
absorbing
sheets - BWR | Boraflex | Treated water | Reduction of
neutron-absorbing
capacity/ boraflex
degradation | Chapter XI.M22, "Boraflex
Monitoring" | No | | | A-89 | b | Spent fuel
storage racks
Neutron-
absorbing
sheets - BWR | Boral,
boron steel | Treated water | Reduction of
neutron-absorbing
capacity and loss of
material/
general corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | | A-86 | а | Spent fuel
storage racks
Neutron-
absorbing
sheets - PWR | Boraflex | Treated borated water | Reduction of
neutron-absorbing
capacity/ boraflex
degradation | Chapter XI.M22, "Boraflex
Monitoring" | No | | | A-88 | b | Spent fuel
storage racks
Neutron-
absorbing
sheets - PWR | Boral,
boron steel | Treated borated water | Reduction of
neutron-absorbing
capacity and loss of
material/
general corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | | A-96 | С | Spent fuel
storage racks
Storage racks -
BWR | Stainless
steel | Treated water >60°C (>140°F) | Cracking/ stress
corrosion cracking | Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515 | No | | Treated borated water >60°C (>140°F) Stainless steel Cracking/ stress corrosion cracking Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 # A3. SPENT FUEL POOL COOLING AND CLEANUP (PRESSURIZED WATER REACTOR) # Systems, Structures, and Components This section comprises the PWR spent fuel pool cooling and cleanup system and consists of piping, valves, heat exchangers, filters, linings, demineralizers, and pumps. The system contains borated water. Stainless steel components are not subject to significant aging degradation in borated water and, therefore, are not included in this section. The system removes heat from the spent fuel pool, and transfers heat to the closed-cycle cooling water system, which in turn transfers heat to the open-cycle cooling water system. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the PWR spent fuel pool cooling and cleanup system are governed by Group C Quality Standards. With respect to filters, these items are to be addressed consistent with the NRC position on consumables, provided in the NRC letter from Christopher I. Grimes to Douglas J. Walters of NEI, dated March 10, 2000. Specifically, components that function as system filters are typically replaced based on performance or condition monitoring that identifies whether these components are at the end of their qualified lives and may be excluded, on a plant-specific basis, from an
aging management review under 10 CFR 54.21(a)(1)(ii). The application is to identify the standards that are relied on for replacement as part of the methodology description, for example, NFPA standards for fire protection equipment. Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Accordingly, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. # **System Interfaces** The systems that interface with the PWR spent fuel cooling and cleanup system are the PWR emergency core cooling system (V.D1), the closed-cycle cooling water system (VII.C2), and the PWR chemical and volume control system (VII.E1). VII AUXILIARY SYSTEMS A3 Spent Fuel Pool Cooling and Cleanup (PWR) | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|--|---|------------|--------------------------------|---|---|------------------------| | A-15 | VII.A3.5-c
VII.A3.5-a
VII.A3.3-a
VII.A3.2-d
VII.A3.3-d
VII.A3.2-a | | Elastomers | Treated borated water | strength/ elastomers degradation | A plant-specific aging management program that determines and assesses the qualified life of the linings in the environment is to be evaluated. | Yes,
plant specific | | A-79 | VII.A3.1-a
VII.A3.2-b
VII.A3.4-b | surfaces of
piping, piping
components,
and piping
elements. | Steel | Air with borated water leakage | Loss of material/
boric acid corrosion | Chapter XI.M10, "Boric Acid Corrosion" | No | | A-63 | VII.A3.4-
a | Heat exchanger
shell side
components | Steel | Closed cycle cooling water | | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | VII AUXILIARY SYSTEMS A3 Spent Fuel Pool Cooling and Cleanup (PWR) | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|------------|---|---|--|---|---|---| | AP-24 | AP-24 | Heat exchanger
shell side
components
including tubes | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | AP-1 | AP-1 | Piping, piping components, and piping elements | Aluminum | Air with borated water leakage | Loss of material/
boric acid corrosion | Chapter XI.M10, "Boric Acid Corrosion" | No | | AP-12 | AP-12 | Piping, piping components, and piping elements | Copper alloy
<15% Zn | Closed cycle cooling water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | A-39 | VII.A3.2-a | Piping, piping components, and piping elements | Steel with
elastomer
lining | Treated borated water | Loss of material/
pitting and crevice
corrosion (only for
steel after lining
degradation) | PWR primary water in EPRI TR-105714 | Yes,
detection of
aging effects is
to be evaluated | | A-56 | VII.A3.3- | Piping, piping components, and piping elements | Steel with
stainless steel
cladding | Treated borated
water >60°C
(>140°F) | Cracking/ stress corrosion cracking | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 | | # A4. SPENT FUEL POOL COOLING AND CLEANUP (BOILING WATER REACTOR) #### Systems, Structures, and Components This section comprises the BWR spent fuel pool cooling and cleanup system and consists of piping, valves, heat exchangers, filters, linings, demineralizers, and pumps. The system contains chemically treated oxygenated water. The system removes heat from the spent fuel pool, and transfers the heat to the closed-cycle cooling water system, which in turn transfers the heat to the open-cycle cooling water system. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the BWR spent fuel pool cooling and cleanup system are governed by Group C Quality Standards. With respect to filters, these items are to be addressed consistent with the NRC position on consumables, provided in the NRC letter from Christopher I. Grimes to Douglas J. Walters of NEI, dated March 10, 2000. Specifically, components that function as system filters are typically replaced based on performance or condition monitoring that identifies whether these components are at the end of their qualified lives and may be excluded, on a plant-specific basis, from an aging management review under 10 CFR 54.21(a)(1)(ii). The application is to identify the standards that are relied on for replacement as part of the methodology description, for example, NFPA standards for fire protection equipment. Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Accordingly, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. #### System Interfaces The systems that interface with the BWR spent fuel cooling and cleanup system are the closed-cycle cooling water system (VII.C2) and the condensate system (VIII.E). | VII | AUXILIARY SYSTEMS | | |-----|--|---| | Α4 | Spent Fuel Pool Cooling and Cleanup (BWF | 5 | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|--|--|---|-------------------------------|---|---|---| | A-16 | VII.A4.2-a
VII.A4.5-a
VII.A4.3-a
VII.A4.2-b
VII.A4.5-b
VII.A4.3-b | Ü | Elastomers | Treated water | Hardening and loss
of strength/
elastomers
degradation | A plant-specific aging management program that determines and assesses the qualified life of the linings in the environment is to be evaluated. | Yes,
plant specific | | A-63 | VII.A4.4-
a | Heat
exchanger
shell side
components | Steel | Closed cycle
cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | AP-24 | AP-24 | Heat
exchanger
shell side
components
including tubes | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | A-70 | VII.A4.4-
b | Heat
exchanger tube
side
components
including tubes | Stainless
steel/ steel
with stainless
steel cladding | Treated water | Loss of material/
Pitting and crevice
corrosion | Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) The AMP is to be augmented by verifying the effectiveness of water chemistry control. See Chapter XI.M32, "One-Time Inspection," for an acceptable verification program. | Yes,
detection of
aging effects is
to be evaluated | VII AUXILIARY SYSTEMS A4 Spent Fuel Pool Cooling and Cleanup (BWR) | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |-------|------------|---|---|-------------------------------|---
---|---| | AP-12 | AP-12 | Piping, piping components, and piping elements | Copper alloy
<15% Zn | Closed cycle
cooling water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | AP-32 | AP-32 | Piping, piping components, and piping elements | Copper alloy
>15% Zn | Treated water | Loss of material/
selective leaching | Chapter XI.M33, "Selective
Leaching of Materials" | No | | AP-31 | AP-31 | Piping, piping components, and piping elements | Gray cast iron | Treated water | Loss of material/
selective leaching | Chapter XI.M33, "Selective
Leaching of Materials" | No | | A-58 | | Piping, piping
components,
and piping
elements | Stainless stee | Treated water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) The AMP is to be augmented by verifying the effectiveness of water chemistry control. See Chapter XI.M32, "One-Time Inspection," for an acceptable verification program. | Yes,
detection of
aging effects is
to be evaluated | | A-40 | VII.A4.2-a | Piping, piping
components,
and piping
elements | Steel with
elastomer
lining or
stainless steel
cladding | Treated water | Loss of material/
pitting and crevice
corrosion (only for
steel after
lining/cladding
degradation) | Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) The AMP is to be augmented by verifying the effectiveness of water chemistry control. See Chapter XI.M32, "One-Time Inspection," for an acceptable verification program. | Yes,
detection of
aging effects is
to be evaluated | # A5. SUPPRESSION POOL CLEANUP SYSTEM (BOILING WATER REACTOR) # Systems, Structures, and Components This section comprises the suppression pool cleanup system, which maintains water quality in the suppression pool in boiling water reactors (BWRs). The components of this system include piping, filters, valves, and pumps. These components are fabricated of carbon, low-alloy, or austenitic stainless steel. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," the components that comprise the suppression pool cleanup system are governed by the same Group C Quality Standards Group as the corresponding components in the spent fuel pool cooling and cleanup system (VII.A4). Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Accordingly, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. # **System Interfaces** The system that interfaces with the suppression pool cleanup system is the BWR containment (II.B), or BWR emergency core cooling system (V.D2). # **Evaluation Summary** The suppression pool cleanup system in BWRs is similar to the spent fuel pool cooling and cleanup system (VII.A4), and the components in the two systems are identical or very similar. The reader is therefore referred to the section for the spent fuel storage pool system for a listing of aging effects, aging mechanisms, and aging management programs that are to be applied to the suppression pool cleanup system components. (The only component in VII.A4 that may not be applicable to the suppression pool cleanup system is the heat exchanger [VII.A4.4].) # B. OVERHEAD HEAVY LOAD AND LIGHT LOAD (RELATED TO REFUELING) HANDLING SYSTEMS #### Systems, Structures, and Components Most commercial nuclear facilities have between fifty and one hundred cranes. Many of these cranes are industrial grade cranes that must meet the requirements of 29 CRF Volume XVII, Part 1910, and Section 1910.179. They do not fall within the scope of 10 CFR Part 54.4 and therefore are not required to be part of the integrated plant assessment (IPA). Normally fewer than ten cranes fall within the scope of 10 CFR Part 54.4. These cranes must all comply with the requirements provided in 10 CFR Part 50.65 and Reg. Guide 1.160 for monitoring the effectiveness of maintenance at nuclear power plants. The Inspection of Overhead Heavy Load and Light Load (Related to Refueling) Handling Systems (the Program) must demonstrate that the testing and the monitoring of the maintenance programs have been completed to ensure that the structures, systems, and components of these cranes are capable of sustaining their rated loads during the period of extended operation. The inspection is also to evaluate whether the usage of the cranes or hoists has been sufficient to warrant additional fatigue analysis. It should be noted that many of the systems and components of these cranes can be classified as moving parts or as components which change configuration, or, they may be subject to replacement based on a qualified life. In any of these cases, they will not fall within the scope of this Aging Management Review (AMR). The primary components that this program is concerned with are the structural girders and beams that make up the bridge and the trolley. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the overhead heavy load and light load handling systems are governed by Group C Quality Standards. Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. # **System Interfaces** No other systems discussed in this report interface with the overhead heavy load and light load (related to refueling) handling systems. Physical interfaces exist with the supporting structure. The direct interface is at the connection to the structure. | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | - 19gag | Further
Evaluation | |------|-----------|-----------------------------------|----------|--|--|--|-----------------------| | A-05 | VII.B.2-a | Cranes - rails | Steel | Air – indoor
uncontrolled
(External) | Loss of material/
wear | Chapter XI.M23, "Inspection of
Overhead Heavy Load and Light
Load (Related to Refueling)
Handling Systems" | No | | A-06 | | Cranes -
Structural
girders | Steel | Air – indoor
uncontrolled
(External) | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation for structural girders of cranes that fall within the scope of 10 CFR 54. See the Standard Review Plan, Section 4.7, "Other Plant-Specific Time-Limited Aging Analyses," for generic guidance for meeting the requirements of 10 CFR 54.21 (c). | Yes,
TLAA | | A-07 | | Cranes -
Structural
girders | Steel | Air – indoor
uncontrolled
(External) | Loss of material/
General corrosion | Chapter XI.M23, "Inspection of
Overhead Heavy Load and Light
Load (Related to Refueling)
Handling Systems" | No | # C1. OPEN-CYCLE COOLING WATER SYSTEM (SERVICE WATER SYSTEM) # Systems, Structures, and Components This section comprises the open-cycle cooling water (OCCW) (or service water) system, which consists of piping, heat exchangers, pumps, flow orifices, basket strainers, and valves, including containment isolation valves. Because the characteristics of an OCCW system may be unique to each facility, the OCCW system is defined as a system or systems that transfer heat from safety-related systems, structures, and components (SSCs) to the ultimate heat sink (UHS) such as a lake, ocean, river, spray pond, or cooling tower. The AMPs described in this section apply to any such system, provided the service conditions and materials of construction are identical to those identified in the section. The system removes heat from the closed-cycle cooling water system and, in some plants, other auxiliary systems and components such as steam turbine bearing oil coolers, or miscellaneous coolers in the condensate system. The only heat exchangers addressed in this section are those removing heat from the closed-cycle cooling system. Heat exchangers for removing heat from other auxiliary systems and components are addressed in their respective systems, such as those for the steam turbine bearing oil coolers (VIII.A) and for the condensate system coolers (VIII.E). Based on Regulatory
Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the open-cycle cooling water system are governed by Group C Quality Standards, with the exception of those forming part of the containment penetration boundary which are governed by Group B Quality Standards. Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Accordingly, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. # **System Interfaces** The systems that may interface with the open-cycle cooling water system include the closed-cycle cooling water system (VII.C2), the ultimate heat sink (VII.C3), the emergency diesel generator system (VII.H2), the containment spray system (V.A), the PWR steam generator blowdown system (VIII.F), the condensate system (VIII.E), the auxiliary feedwater system (PWR) (VIII.G), the emergency core cooling system (PWR) (V.D1), and the emergency core cooling system (BWR) (V.D2). | VII | AUXILIARY SYSTEMS | |-----|--| | C1 | Open-Cycle Cooling Water System (Service Water System) | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|----------------|--|-------------------------|-------------|--|---|-----------------------| | A-65 | VII.C1.3-
a | Heat exchanger
tube side
components
including tubes | Copper alloy
<15% Zn | Raw water | Loss of material/ pitting, crevice, microbiologically influenced corrosion and macrofouling/ biofouling | Chapter XI.M20, "Open-Cycle Cooling
Water System" | No | | A-66 | VII.C1.3-
a | Heat exchanger
tube side
components
including tubes | Copper alloy
>15% Zn | Raw water | Macrofouling/ biofouling and loss of material/ pitting, crevice, microbiologically influenced corrosion, and selective leaching | Chapter XI.M20, "Open-Cycle Cooling
Water System" and Chapter XI.M33,
"Selective Leaching of Materials" | No | | A-64 | VII.C1.3-
a | Heat exchanger
tube side
components
including tubes | Steel | Raw water | Loss of material/
general, pitting,
crevice,
microbiologically
influenced corrosion
and macrofouling/
biofouling | Chapter XI.M20, "Open-Cycle Cooling
Water System" | No | | A-72 | VII.C1.3-
b | Heat exchanger
tubes | Copper alloy
<15% Zn | Raw water | Reduction of heat transfer/ biofouling | Chapter XI.M20, "Open-Cycle Cooling
Water System" | No | | \-74 | VII.C1.3- | Heat exchanger
tubes | Copper alloy
>15% Zn | Raw water | Reduction of heat transfer/ biofouling | Chapter XI.M20, "Open-Cycle Cooling
Water System" | No | VII AUXILIARY SYSTEMS C1 Open-Cycle Cooling Water System (Service Water System) | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|----------------|---|-------------------------|-------------|---|---|-----------------------| | A-44 | | Piping, piping
components,
and piping
elements | Copper alloy
<15% Zn | Raw water | | Chapter XI.M20, "Open-Cycle Cooling
Water System" | No | | A-49 | | Piping, piping
components,
and piping
elements | Copper alloy
>15% Zn | Raw water | Macrofouling/
biofouling and loss of
material/ pitting and
crevice corrosion, and
selective leaching | Chapter XI.M20, "Open-Cycle Cooling
Water System" and Chapter XI.M33,
"Selective Leaching of Materials" | No | | A-51 | VII.C1.5-
a | Piping, piping components, and piping elements | Gray cast iron | Raw water | Macrofouling/ biofouling and loss of material/ pitting, crevice, microbiologically influenced corrosion, and selective leaching | Chapter XI.M20, "Open-Cycle Cooling
Water System" and Chapter XI.M33,
"Selective Leaching of Materials" | No | | A-02 | VII.C1.1- | Piping, piping components, and piping elements | Gray cast iron | Soil | Loss of material/
selective leaching
and general corrosion | Chapter XI.M33, "Selective Leaching of Materials" | No | | VII | AUXILIARY SYSTEMS | |-----|--| | C1 | Open-Cycle Cooling Water System (Service Water System) | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|----------------|---|--|-------------|--|--|--| | A-54 | VII.C1.6-a | Piping, piping
components,
and piping
elements | Stainless steel | Raw water | Loss of material/
pitting, and crevice
corrosion and
macrofouling/
biofouling | Chapter XI.M20, "Open-Cycle Cooling Water System" | No | | A-32 | VII.C1.6-a | Piping, piping components, and piping elements | Steel | Raw water | Loss of material/
general, pitting,
crevice,
microbiologically
influenced corrosion
and macrofouling/
biofouling | Chapter XI.M20, "Open-Cycle Cooling Water System" | No | | A-01 | b | Piping, piping components, and piping elements | Steel (with or without coating or wrapping) | Soil | Loss of material/
general, pitting,
crevice, and
microbiologically
influenced corrosion | Chapter XI.M28, "Buried Piping and
Tanks Surveillance," or
Chapter XI.M34, "Buried Piping and
Tanks Inspection" | Yes, detection of aging effects and operating experience are to be further evaluated | | A-38 | VII.C1.1-
a | Piping, piping
components,
and piping
elements | Steel (without lining/coating or with degraded lining/coating) | Raw water | Loss of material/
general, pitting,
crevice,
microbiologically
influenced corrosion
and macrofouling/
biofouling | Chapter XI.M20, "Open-Cycle Cooling
Water System" | No | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Daina Management Program (AMP) | Further
Evaluation | | | | |-------|------|----------------------------------|---------------------------------------|-------------|----------------------------|--|-----------------------|--|--|--| | AP-25 | | components, | Steel with internal lining or coating | Raw water | | Chapter XI.M20, "Open-Cycle Cooling
Water System" | No | | | | #### C2. CLOSED-CYCLE COOLING WATER SYSTEM # Systems, Structures, and Components This section comprises the closed-cycle cooling water (CCCW) system, which consists of piping, radiation elements, temperature elements, heat exchangers, pumps, tanks, flow orifices, and valves, including containment isolation valves. The system contains chemically treated demineralized water. The closed-cycle cooling water system is designed to remove heat from various auxiliary systems and components such as the chemical and volume control system and the spent fuel cooling system to the open-cycle cooling water system (VII.C1). A CCCW system is defined as part of the service water system that does not reject heat directly to a heat sink and that has water chemistry control and is not subject to significant sources of contamination. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components in the closed-cycle cooling water system are classified as Group C quality Standards, with the exception of those forming part of the containment penetration boundary which are Group B. The aging management programs (AMPs) for the heat exchanger between the closed-cycle and the open-cycle cooling water systems are addressed in the open-cycle cooling water system (VII.C1). The AMPs for the heat exchangers between the closed-cycle cooling water system and the interfacing auxiliary systems are included in the evaluations of their respective systems, such as those for the PWR and BWR spent fuel pool cooling and cleanup systems (VII.A3 and VII.A4, respectively) and the chemical and volume control system (VII.E1). Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period.
Accordingly, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. #### **System Interfaces** The systems that interface with the closed-cycle cooling water system include the open-cycle cooling water system (VII.C1), the PWR spent fuel pool cooling and cleanup system (VII.A3), the BWR spent fuel pool cooling and cleanup system (VII.A4), the chemical and volume control system (VII.E1), the BWR reactor water cleanup system (VII.E3), the shutdown cooling system (older BWR, VII.E5), the primary containment heating and ventilation system (VII.F3), the fire protection (VII.G), the emergency diesel generator system (VII.H2), the PWR containment spray system (V.A), the PWR and BWR emergency core cooling systems (V.D1 and V.D2), the | PWR steam generator blowdown system (VIII.F), the condensate system (VIII.E), and the PWR auxiliary feedwater system (VIII.G). | |--| VII AUXILIARY SYSTEMS C2 Closed-Cycle Cooling Water System | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |-------------|----------------|--|-------------------------|-------------------------------|--|---|-----------------------| | AP-24 | AP-24 | Heat exchanger shell side components including tubes | | Closed cycle
cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | AP-12 | AP-12 | Piping, piping components, and piping elements | | Closed cycle
cooling water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | AP-32 | AP-32 | | Copper alloy
>15% Zn | Treated water | Loss of material/
selective leaching | Chapter XI.M33, "Selective
Leaching of Materials" | No | | A-50 | VII.C2.3-
a | Piping, piping components, and piping elements | Gray cast iron | Closed cycle
cooling water | Loss of material/
pitting and crevice
corrosion, and
selective leaching | Chapter XI.M21, "Closed-Cycle
Cooling Water System," and
Chapter XI.M33, "Selective
Leaching of Materials" | No | | AP-31 | AP-31 | Piping, piping components, and piping elements | Gray cast iron | Treated water | Loss of material/
selective leaching | Chapter XI.M33, "Selective
Leaching of Materials" | No | | A-52 | VII.C2.2-
a | 1 0,11 0 | | Closed cycle
cooling water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|--------------------------|----------------------------------|----------|----------------------------|--|--|-----------------------| | A-25 | VII.C2.5-a
VII.C2.2-a | elements, and | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | #### C3. Ultimate Heat Sink #### **Systems, Structures, and Components** The ultimate heat sink (UHS) consists of a lake, ocean, river, spray pond, or cooling tower and provides sufficient cooling water for safe reactor shutdown and reactor cooldown via the residual heat removal system or other similar system. Due to the varying configurations of connections to lakes, oceans, and rivers, a plant specific aging management program (AMP) is required. Appropriate AMPs shall be provided to trend and project (1) deterioration of earthen dams and impoundments; (2) rate of silt deposition; (3) meteorological, climatological, and oceanic data since obtaining the Final Safety Analysis Report (FSAR) data; (4) water level extremes for plants located on rivers; and (5) aging degradation of all upstream and downstream dams affecting the UHS. The systems, structures and components included in this section consist of piping, valves, and pumps. The cooling tower is addressed in this report on water-control structures (III.A6). The ultimate heat sink absorbs heat from the residual heat removal system or other similar system. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," the piping and valves used for the ultimate heat sink are governed by Group C Quality Standards. Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Accordingly, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. #### **System Interfaces** The systems that interface with the ultimate heat sink include the open-cycle cooling water system (VII.C1) and the emergency core cooling systems (V.D1 and V.D2). | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|--------------------------|--|---------------------------------------|-------------|---|---|-----------------------| | A-43 | VII.C3.2-a
VII.C3.1-a | Piping, piping
acomponents,
and piping
elements | Copper alloy
<15% Zn | Raw water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M20, "Open-Cycle Cooling Water System" | No | | A-48 | | Piping, piping
components,
and piping
elements | Copper alloy
>15% Zn | Raw water | Loss of material/
pitting and crevice
corrosion, and
selective leaching | Chapter XI.M20, "Open-Cycle Cooling Water System" and Chapter XI.M33, "Selective Leaching of Materials" | No | | A-53 | VII.C3.2-
a | Piping, piping components, and piping elements | Stainless steel | Raw water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M20, "Open-Cycle Cooling Water System" | No | | A-31 | VII.C3.3-a | Piping, piping
acomponents,
and piping
elements | Steel | Raw water | Loss of material/
general, pitting,
crevice and
microbiologically
infuenced corrosion | Chapter XI.M20, "Open-Cycle Cooling Water System" | No | | AP-25 | AP-25 | Piping, piping components, and piping elements | Steel with internal lining or coating | Raw water | Loss of material/
lining or coating
degradation | Chapter XI.M20, "Open-Cycle Cooling Water System" | No | #### D. COMPRESSED AIR SYSTEM # Systems, Structures, and Components This section comprises the compressed air system, which consists of piping, valves (including containment isolation valves), air receiver, pressure regulators, filters, and dryers. The system components and piping are located in various buildings at most nuclear power plants. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste- Containing Components of Nuclear Power Plants," all components of the compressed air system are classified as Group D Quality Standards, with the exception of those forming part of the containment penetration boundary which are Group B. However, the cleanliness of these components and high air quality is to be maintained because the air provides the motive power for instruments and active components (some of them safety-related) that may not function properly if nonsafety Group D equipment is contaminated. With respect to filters, these items are to be addressed consistent with the NRC position on consumables, provided in the NRC letter from Christopher I. Grimes to Douglas J. Walters of NEI, dated March 10, 2000. Specifically, components that function as system filters are typically replaced based on performance or condition monitoring that identifies whether these components are at the end of their qualified lives and may be excluded, on a plant-specific basis, from an aging management review under 10 CFR 54.21(a)(1)(ii). The application is to identify the standards that are relied on for replacement as part of the methodology description, for example, NFPA standards for fire protection equipment. Pump and valve internals perform their intended functions with
moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Accordingly, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. #### **System Interfaces** Various other systems discussed in this report may interface with the compressed air system. | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|--|---|----------|--|--|--|------------------------| | A-103 | VII.D. | Closure bolting | Steel | Saturated air | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M24, "Compressed Air Monitoring" | No | | A-26 | VII.D.1-a
VII.D.6-a
VII.D.4-a
VII.D.3-a | Compressed
air system
Piping, piping
components,
and piping
elements | Steel | Condensation
(Internal) | Loss of material/
general and pitting
corrosion | Chapter XI.M24, "Compressed Air
Monitoring" | No | | A-80 | VII.D.1-a
VII.D.6-a | components
external
surfaces and | Steel | Air – indoor
uncontrolled
(External) | Loss of material/
general, pitting and
corrosion | A plant specific aging management program is to be evaluated | Yes, plant
specific | #### E1. CHEMICAL AND VOLUME CONTROL SYSTEM (PRESSURIZED WATER REACTOR) # Systems, Structures, and Components This section comprises a portion of the pressurized water reactor (PWR) chemical and volume control system (CVCS). The portion of the PWR CVCS covered in this section extends from the isolation valves associated with the reactor coolant pressure boundary (and Code change as discussed below) to the volume control tank. This portion of the PWR CVCS consists of high-and low-pressure piping and valves (including the containment isolation valves), regenerative and letdown heat exchangers, pumps, basket strainers, and the volume control tank. The system contains chemically treated borated water; the shell side of the letdown heat exchanger contains closed-cycle cooling water (treated water). Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the CVCS are governed by Group C Quality Standards. Portions of the CVCS extending from the reactor coolant system up to and including the isolation valves associated with reactor coolant pressure boundary are governed by Group A Quality Standards and covered in IV.C2. Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Accordingly, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. # **System Interfaces** The systems that interface with the chemical and volume control system include the reactor coolant system (IV.C2), the emergency core cooling system (V.D1), the spent fuel pool cooling system (VII.A3), and the closed-cycle cooling water system (VII.C2). | VII | AUXILIARY SYSTEMS | |-----|--| | E1 | Chemical and Volume Control System (PWR) | | ltem | | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|--|---|---------------------|---------------------------------|--|---|------------------------| | A-104 | VII.E1. | Closure bolting | High strength steel | Air with steam or water leakage | Cracking/ cyclic loading, stress corrosion cracking | A plant specific aging management programis to be evaluated | Yes, plant
specific | | A-79 | VII.E1.5-b
VII.E1.6-a
VII.E1.2-a | surfaces of
piping, piping
components,
and piping
elements. | Steel | Air with borated water leakage | Loss of material/boric acid corrosion | Chapter XI.M10, "Boric Acid Corrosion" | No | | A-63 | | Heat exchanger
shell side
components | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | VII E1 AUXILIARY SYSTEMS Chemical and Volume Control System (PWR) | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Ading Management Program (AMP) | Further
Evaluation | |-------|-------|---|-------------------------|--|--|---|-----------------------| | A-100 | а | Heat exchanger
shell side
components
including tubes | | Treated borated water | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3, "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | | | AP-24 | | Heat exchanger
shell side
components
including tubes | | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | A-69 | b | Heat exchanger
tube side
components
including tubes | | Treated borated
water >60°C
(>140°F) | Cracking/ stress
corrosion cracking,
cyclic loading | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 The AMP is to be augmented by verifying the absence of cracking due to stress corrosion cracking and cyclic loading, or loss of material due to pitting and crevice corrosion. An acceptable verification program is to include temperature and radioactivity monitoring of the shell side water, and eddy current testing of tubes. | | | AP-34 | AP-34 | Heat exchanger
tubes | Copper alloy
<15% Zn | Treated water | Loss of material/
pitting, crevice
corrosion and
galvanic corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Adina Manadamant Dradram (AMD) | Further
Evaluation | |--------------|--------------------------|---|---------------------------|-----------------------------------|---|---|------------------------| | 4-76 | VII.E1.5-
a | High-pressure
pump
Casing and
closure bolting | Stainless
steel, Steel | Treated borated water | Cracking/ cyclic loading | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | \ P-1 | AP-1 | Piping, piping components, and piping elements | Aluminum | Air with borated
water leakage | Loss of material/
boric acid corrosion | Chapter XI.M10, "Boric Acid Corrosion" | No | | \P-12 | AP-12 | Piping, piping components, and piping elements | Copper alloy
<15% Zn | Closed cycle cooling water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | A-57 | VII.E1.1-a
VII.E1.3-a | Piping, piping components, and piping elements | Stainless steel | Treated borated water | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3, "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | Yes,
TLAA | | A-34 | VII.E1.3-a
VII.E1.8-a | Piping, piping
components,
and piping
elements | Steel | Air – indoor
uncontrolled | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be
evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3, "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | Yes,
TLAA | | tem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Ading Management Program (AMP) | Further
Evaluation | |-------------|------|---|----------|--|---|---|-----------------------| | A-84 | С | Regenerative
heat exchanger
tube and shell
side
components
including tubes | | Treated borated
water >60°C
(>140°F) | Cracking/ stress
corrosion cracking,
cyclic loading | Chapter XI.M2, "Water Chemistry," for PWR primary water in EPRI TR-105714 The AMP is to be augmented by verifying the absence of cracking due to stress corrosion cracking and cyclic loading, or loss of material due to pitting and crevice corrosion. An acceptable verification program is to include temperature and radioactivity monitoring of the shell side water, and eddy current testing of tubes. | | This Page Intentionally Left Blank # E2. STANDBY LIQUID CONTROL SYSTEM (BOILING WATER REACTOR) # Systems, Structures, and Components This section comprises the portion of the standby liquid control (SLC) system extending from the containment isolation valve to the solution storage tank. The system serves as a backup reactivity control system in all boiling water reactors (BWRs). The major components of this system are the piping, the solution storage tank, the solution storage tank heaters, valves, and pumps. All of the components from the storage tank to the explosive actuated discharge valve operate in contact with a sodium pentaborate ($Na_2B_{10}O_{16}*10H_2O$) solution. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the standby liquid control system are governed by Group B Quality Standards. The portions of the standby liquid control system extending from the reactor coolant pressure boundary up to and including the containment isolation valves are governed by Group A Quality Standards and covered in IV.C1. Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Accordingly, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. ## **System Interfaces** The system that interfaces with the standby liquid control system is the BWR reactor pressure vessel (IV.A1). If used, the standby liquid control system would inject sodium pentaborate solution into the pressure vessel near the bottom of the reactor core. | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | | | |------|--------------------------|---|--------------------|-----------------------------------|--|--|---|--|--| | A-59 | VII.E2.4-a
VII.E2.2-a | Piping, piping
components,
and piping
elements | Stainless
steel | Sodium
pentaborate
solution | Cracking/ stress
corrosion cracking | Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) The AMP is to be augmented by verifying the effectiveness of water chemistry control. See Chapter XI.M32, "One-Time Inspection," for an acceptable verification program. | Yes,
detection of
aging effects is
to be evaluated | | | # E3. REACTOR WATER CLEANUP SYSTEM (BOILING WATER REACTOR) # Systems, Structures, and Components This section comprises the reactor water cleanup (RWCU) system, which provides for cleanup and particulate removal from the recirculating reactor coolant in all boiling water reactors (BWRs). Some plants may not include the RWCU system in the scope of license renewal, while other plants may include the RWCU system because it is associated with safety-related functions. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," the portion of the RWCU system extending from the reactor coolant recirculation system up to and including the containment isolation valves forms the primary pressure boundary, and is governed by Group A Quality Standards and covered in IV.C1. The remainder of the system outboard of the isolation valves is governed by Group C Quality Standards. In this table, only aging management programs for RWCU-related piping and components outboard of the isolation valves are evaluated. The aging management program for containment isolation valves in the RWCU system is evaluated in IV.C1, which concern the reactor coolant pressure boundary in BWRs. Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Accordingly, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. ## **System Interfaces** The systems that interface with the BWR reactor water cleanup system include the reactor coolant pressure boundary (IV.C1), the closed-cycle cooling water system (VII.C2), and the condensate system (VIII.E). | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|----------------|---|---|---|--|---|------------------------| | A-67 | VII.E3.4-
b | components | Stainless
steel/ steel
with stainless
steel cladding | Closed cycle
cooling water | Loss of material/
microbiologically
influenced corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | A-68 | VII.E3.4-
a | components | steel/ steel | Closed cycle
cooling water
>60°C (>140°F) | Cracking/ stress
corrosion cracking | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | AP-24 | AP-24 | Heat exchanger
shell side
components
including tubes | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | A-71 | VII.E3.4-
a | components | | Treated water
>60°C (>140°F) | Cracking/ stress
corrosion cracking | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-42 | VII.E3.2-
b | Piping, piping components, and piping elements | Cast austenitic
stainless steel | Treated water | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3, "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | | VII AUXILIARY SYSTEMS E3 Reactor Water Cleanup System | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|--------------------------|---|---------------------------------|---------------------------------|---
---|-----------------------| | A-41 | VII.E3.2-
a | Piping, piping components, and piping elements | Cast austenitic stainless steel | Treated water
>60°C (>140°F) | Cracking/ stress
corrosion cracking,
intergranular stress
corrosion cracking | Chapter XI.M25, "BWR Reactor Water Cleanup System" | No | | AP-12 | AP-12 | Piping, piping components, and piping elements | Copper alloy
<15% Zn | Closed cycle cooling water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | AP-32 | AP-32 | Piping, piping components, and piping elements | Copper alloy
>15% Zn | Treated water | Loss of material/
selective leaching | Chapter XI.M33, "Selective Leaching of Materials" | No | | AP-31 | AP-31 | Piping, piping components, and piping elements | Gray cast iron | Treated water | Loss of material/
selective leaching | Chapter XI.M33, "Selective Leaching of Materials" | No | | A-62 | VII.E3.2-b
VII.E3.1-b | Piping, piping
components,
and piping
elements | Stainless steel | Treated water | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3, "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | Yes,
TLAA | | A-60 | VII.E3.1-
a | Piping, piping components, and piping elements | Stainless steel | Treated water
>60°C (>140°F) | Cracking/ stress
corrosion cracking,
intergranular stress
corrosion cracking | Chapter XI.M25, "BWR Reactor Water Cleanup System" | No | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Ading Management Program (AMP) | Further
Evaluation | |------|----------------|---|-----------------|---------------------------------|---------------------------------------|---|------------------------| | A-34 | VII.E3.2-
c | Piping, piping components, and piping elements | Steel | Air – indoor
uncontrolled | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3, "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | Yes,
TLAA | | A-85 | VII.E3.3-
d | Regenerative
heat exchanger
tube and shell
side
components
including tubes | Stainless steel | Treated water
>60°C (>140°F) | Cracking/ stress corrosion cracking | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | # **E4. SHUTDOWN COOLING SYSTEM (OLDER BWR)** # Systems, Structures, and Components This section comprises the shutdown cooling (SDC) system for older vintage boiling water reactors (BWRs) and consists of piping and fittings, the SDC system pump, the heat exchanger, and valves. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the SDC system are governed by Group B Quality Standards. Portions of the SDC system extending from the reactor coolant pressure boundary up to and including the containment isolation valves are governed by Group A Quality Standards and covered in IV.C1. Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Accordingly, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. #### **System Interfaces** The systems that interface with the SDC system include the reactor coolant pressure boundary (IV.C1) and the closed-cycle cooling water system (VII.C2). | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |-------------|----------------|--|---------------------------------------|---------------------------------|--|---|-----------------------| | A-63 | VII.E4.4-
a | Heat
exchanger
shell side
components | Steel | Closed cycle
cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | 4-67 | VII.E4.4-
a | Heat
exchanger
shell side
components
including tubes | with stainless
steel cladding | Closed cycle
cooling water | Loss of material/
microbiologically
influenced corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | NP-24 | AP-24 | Heat
exchanger
shell side
components
including tubes | | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | \-101 | VII.E4.3-
a | Piping, piping
components,
and piping
elements | Cast
austenitic
stainless steel | Treated water
>60°C (>140°F) | | Chapter XI.M7, "BWR Stress
Corrosion Cracking" and Chapter
XI.M2, "Water Chemistry," for BWR
water in BWRVIP-29 (EPRI TR-
103515) | No | | \P-12 | AP-12 | Piping, piping components, and piping elements | Copper alloy
<15% Zn | Closed cycle cooling water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | AP-32 | AP-32 | Piping, piping components, and piping elements | Copper alloy
>15% Zn | Treated water | Loss of material/
selective leaching | Chapter XI.M33, "Selective
Leaching of Materials" | No | A-61 | VII | AUXILIARY SYSTEMS | |-----|-------------------------------------| | E4 | Shutdown Cooling System (Older BWR) | VII.E4.3-a Piping, piping VII.E4.1-c components, and piping elements Stainless steel Structure Aging Management Program Aging Effect/ Further and/or Link Material Environment Item Mechanism Evaluation (AMP) Component AP-31 AP-31 Gray cast iron Treated water oss of material/ Chapter XI.M33, "Selective No Piping, piping selective leaching Leaching of Materials" components, and piping elements A-62 VII.E4.1- Piping, piping Fatigue is a time-limited aging Stainless Treated water Cumulative fatique Yes. components, steel damage/ fatique analysis (TLAA) to be evaluated for TLAA the period of extended operation. and piping See the Standard Review Plan. elements Section 4.3, "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c). A-58 VII.E4.1- Piping, piping oss of material/ Chapter XI.M2, "Water Chemistry," Stainless Treated water Yes. pitting and crevice for BWR water in BWRVIP-29 detection of components, steel and piping corrosion (EPRI TR-103515) aging effects is elements to be evaluated The AMP is to be augmented by verifying the effectiveness of water Treated water >60°C (>140°F) Cracking/ stress corrosion cracking chemistry control. See Chapter XI.M32, "One-Time Inspection," for an acceptable verification program. Chapter XI.M7, "BWR Stress Corrosion Cracking" and Chapter water in BWRVIP-29 (EPRI TR- 103515) XI.M2, "Water Chemistry," for BWR No | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|----------------|---|----------|---------------|--|---|---| | A-37 | VII.E4.1-
b | Piping, piping components, and piping elements | Steel | Treated water | Cumulative fatigue
damage/ fatigue | Fatigue is a time-limited aging analysis (TLAA) to be evaluated for the period of extended operation. See the Standard Review Plan, Section 4.3, "Metal Fatigue," for acceptable methods for meeting the requirements of 10 CFR 54.21(c). | | | A-35 | | Piping, piping
components,
and piping
elements | Steel | Treated water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M2, "Water Chemistry," for BWR water in BWRVIP-29 (EPRI TR-103515) The AMP is to be augmented by verifying the effectiveness of water chemistry control. See Chapter XI.M32, "One-Time Inspection," for an acceptable verification program. | Yes, detection
of aging effects
is to
be
evaluated | #### F1. CONTROL ROOM AREA VENTILATION SYSTEM # Systems, Structures, and Components This section comprises the control room area ventilation system (with warm moist air as the normal environment), which contains ducts, piping and fittings, equipment frames and housings, flexible collars and seals, filters, and heating and cooling air handlers. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the control room area ventilation system are governed by Group B Quality Standards. With respect to filters and seals, these items are to be addressed consistent with the NRC position on consumables, provided in the NRC letter from Christopher I. Grimes to Douglas J. Walters of NEI, dated March 10, 2000. Specifically, components that function as system filters and seals are typically replaced based on performance or condition monitoring that identifies whether these components are at the end of their qualified lives and may be excluded, on a plant-specific basis, from an aging management review under 10 CFR 54.21(a)(1)(ii). The application is to identify the standards that are relied on for replacement as part of the methodology description, for example, NFPA standards for fire protection equipment. Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. ## **System Interfaces** The system that interfaces with the control room area ventilation system is the auxiliary and radwaste area ventilation system (VII.F2). The cooling coils receive their cooling water from other systems, such as the hot water heating system or the chilled water cooling system. | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |-------|------------|--|---------------------|--|---|---|------------------------| | A-10 | VII.F1.4-a | Ducting and components external surfaces | Steel | Air – indoor
uncontrolled
(External) | | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-14 | а | | Galvanized
steel | Condensation
(Internal) | | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-08 | а | Ducting and components internal surfaces | Steel | Air – indoor
uncontrolled
(Internal) | Loss of material/
general, pitting and
crevice corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-13 | а | Ducting and components internal surfaces | Steel | Condensation
(Internal) | Loss of material/
general, pitting,
crevice corrosion,
and microbiologically
influenced corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-105 | | Ducting closure bolting | Steel | Air – indoor
uncontrolled | | A plant specific aging management program is to be evaluated | Yes, plant
specific | | A-09 | а | Ducting, piping
and
components
external
surfaces | Stainless steel | Condensation
(External) | | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | components including tubes | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|--------------------------|--|-----------------|---|--|---|------------------------| | A-12 | а | Ducting, piping and components internal surfaces | Stainless steel | Condensation
(Internal) | Loss of material/
pitting and crevice
corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-11 | а | Ducting, piping
and
components
internal
surfaces | Steel | Air – indoor
uncontrolled
(Internal) | Loss of material/
general, pitting and
crevice corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-36 | VII.F1.4-b
VII.F1.1-b | Elastomer
seals and
components | Elastomers | Air – indoor
uncontrolled
(External) | Hardening and loss of strength/ elastomers degradation | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-73 | С | Elastomer
seals and
components | Elastomers | Air – indoor
uncontrolled
(External) | Loss of material/
wear | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-18 | С | Elastomer
seals and
components | Elastomers | Air – indoor
uncontrolled
(Internal) | Loss of material/
wear | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-17 | | Elastomer
seals and
components | | Air – indoor
uncontrolled
>35°C (>95°F)
(Internal) | Hardening and loss of strength/ elastomers degradation | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | AP-24 | | Heat
exchanger
shell side | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|----------------|---|-------------------------|----------------------------|--|---|------------------------| | AP-34 | AP-34 | Heat
exchanger
tubes | Copper alloy
<15% Zn | Treated water | Loss of material/
pitting, crevice
corrosion and
galvanic corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | AP-12 | AP-12 | Piping, piping components, and piping elements | Copper alloy
<15% Zn | Closed cycle cooling water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | A-46 | VII.F1.2-
a | Piping, piping components, and piping elements | Copper alloy
>15% Zn | Condensation
(External) | Loss of material/
pitting and crevice
corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-25 | VII.F1.3-
a | Piping, piping components, piping elements, and tanks | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | # F2. Auxiliary and Radwaste Area Ventilation System # Systems, Structures, and Components This section comprises the auxiliary and radwaste areas ventilation systems (with warm moist air as the normal environment) and contains ducts, piping and fittings, equipment frames and housings, flexible collars and seals, filters, and heating and cooling air handlers. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the auxiliary and radwaste area ventilation system are governed by Group B Quality Standards. With respect to filters and seals, these items are to be addressed consistent with the NRC position on consumables, provided in the NRC letter from Christopher I. Grimes to Douglas J. Walters of NEI, dated March 10, 2000. Specifically, components that function as system filters and seals are typically replaced based on performance or condition monitoring that identifies whether these components are at the end of their qualified lives and may be excluded, on a plant-specific basis, from an aging management review under 10 CFR 54.21(a)(1)(ii). The application is to identify the standards that are relied on for replacement as part of the methodology description, for example, NFPA standards for fire protection equipment. Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. # **System Interfaces** The systems that interface with the auxiliary and radwaste area ventilation system are the control room area ventilation system (VII.F1) and the diesel generator building ventilation system (VII.F4). The cooling coils receive their cooling water from other systems, such as the hot water heating system or the chilled water cooling system. | _ | IXILIARY SYSTE
xiliary and Radw | - | ation System | | | | | |------|------------------------------------
--|---------------------|--|---|---|------------------------| | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | | A-10 | VII.F2.1-a | Ducting and components external surfaces | Steel | Air – indoor
uncontrolled
(External) | Loss of material/
general, pitting and
crevice corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-14 | а | Ducting and components internal surfaces | Galvanized
steel | Condensation
(Internal) | Loss of material/
general, pitting,
crevice corrosion,
and microbiologically
influenced corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-08 | | Ducting and components internal surfaces | Steel | Air – indoor
uncontrolled
(Internal) | Loss of material/
general, pitting and
crevice corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-13 | а | Ducting and components internal surfaces | Steel | Condensation
(Internal) | Loss of material/
general, pitting,
crevice corrosion,
and microbiologically
influenced corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-09 | а | Ducting, piping
and
components
external
surfaces | Stainless stee | Condensation
(External) | Loss of material/
pitting and crevice
corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-12 | а | Ducting, piping
and
components
internal
surfaces | Stainless stee | Condensation
(Internal) | Loss of material/
pitting and crevice
corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | VII | AUXILIARY SYSTEMS | | |-----|--|--| | F2 | Auxiliary and Radwaste Area Ventilation System | | | | | | | ltem | | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|--------------------------|--|-------------------------|---|---|---|------------------------| | A-11 | а | Ducting, piping
and
components
internal
surfaces | Steel | Air – indoor
uncontrolled
(Internal) | Loss of material/
general, pitting and
crevice corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-36 | VII.F2.4-b | Elastomer
seals and
components | Elastomers | Air – indoor
uncontrolled
(External) | Hardening and loss of strength/ elastomers degradation | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-73 | С | Elastomer
seals and
components | Elastomers | Air – indoor
uncontrolled
(External) | Loss of material/
wear | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-18 | С | Elastomer
seals and
components | Elastomers | Air – indoor
uncontrolled
(Internal) | Loss of material/
wear | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-17 | VII.F2.1-b
VII.F2.4-b | Elastomer
seals and
components | Elastomers | Air – indoor
uncontrolled
>35°C (>95°F)
(Internal) | Hardening and loss
of strength/
elastomers
degradation | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | AP-24 | AP-24 | Heat
exchanger
shell side
components
including tubes | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | AP-12 | | Piping, piping components, and piping elements | Copper alloy
<15% Zn | Closed cycle cooling water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | | | | |------|----------------|---|-------------------------|----------------------------|--|---|------------------------|--|--|--| | A-46 | VII.F2.2-
a | | Copper alloy
>15% Zn | Condensation
(External) | | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | | | | A-25 | VII.F2.3-
a | Piping, piping components, piping elements, and tanks | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | | | #### F3. PRIMARY CONTAINMENT HEATING AND VENTILATION SYSTEM # Systems, Structures, and Components This section comprises the primary containment heating and ventilation system (with warm moist air as the normal environment), which contains ducts, piping and fittings, equipment frames and housings, flexible collars and seals, filters, and heating and cooling air handlers. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the primary containment heating and ventilation system are governed by Group C Quality Standards. With respect to filters and seals, these items are to be addressed consistent with the NRC position on consumables, provided in the NRC letter from Christopher I. Grimes to Douglas J. Walters of NEI, dated March 10, 2000. Specifically, components that function as system filters and seals are typically replaced based on performance or condition monitoring that identifies whether these components are at the end of their qualified lives and may be excluded, on a plant-specific basis, from an aging management review under 10 CFR 54.21(a)(1)(ii). The application is to identify the standards that are relied on for replacement as part of the methodology description, for example, NFPA standards for fire protection equipment. Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. # **System Interfaces** The systems that interface with the primary containment heating and ventilation system are the closed-cycle cooling water system (VII.C2) and the PWR and BWR containments (II.A and II.B, respectively). The cooling coils receive their cooling water from other systems, such as the hot water heating system or the chilled water cooling system. | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |------|--------------------------|--|---------------------|--|----------------------------|---|------------------------| | A-10 | VII.F3.1-a
VII.F3.4-a | Ducting and components external surfaces | Steel | Air – indoor
uncontrolled
(External) | | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-14 | а | Ducting and components internal surfaces | Galvanized
steel | Condensation
(Internal) | | | Yes, plant
specific | | A-08 | а | Ducting and components internal surfaces | Steel | Air – indoor
uncontrolled
(Internal) | | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-13 | а | Ducting and components internal surfaces | Steel | Condensation
(Internal) | | | Yes, plant
specific | | A-09 | а | Ducting, piping
and
components
external
surfaces | Stainless steel | Condensation
(External) | | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-12 | а | Ducting, piping
and
components
internal
surfaces | Stainless steel | Condensation
(Internal) | | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | VII | AUXILIARY SYSTEMS | |-----|---| | F3 | Primary Containment Area Ventilation System | | Item | | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |-------|-------|--|-------------------------|---|--|---|------------------------| | A-11 | а | Ducting, piping
and
components
internal
surfaces | Steel | Air – indoor
uncontrolled
(Internal) | Loss of
material/
general, pitting and
crevice corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-36 | | Elastomer
seals and
components | Elastomers | Air – indoor
uncontrolled
(External) | Hardening and loss of strength/ elastomers degradation | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-73 | С | Elastomer
seals and
components | Elastomers | Air – indoor
uncontrolled
(External) | Loss of material/
wear | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-18 | c | Elastomer
seals and
components | Elastomers | Air – indoor
uncontrolled
(Internal) | Loss of material/
wear | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-17 | | Elastomer
seals and
components | Elastomers | Air – indoor
uncontrolled
>35°C (>95°F)
(Internal) | Hardening and loss of strength/ elastomers degradation | | Yes, plant
specific | | AP-24 | AP-24 | Heat
exchanger
shell side
components
including tubes | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | AP-34 | AP-34 | Heat
exchanger
tubes | Copper alloy
<15% Zn | Treated water | Loss of material/
pitting, crevice
corrosion and
galvanic corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | | | | |-------|----------------|---|-------------------------|----------------------------|--|---|------------------------|--|--|--| | AP-12 | AP-12 | Piping, piping components, and piping elements | Copper alloy
<15% Zn | Closed cycle cooling water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | | | | A-46 | VII.F3.2-
a | Piping, piping components, and piping elements | Copper alloy
>15% Zn | Condensation
(External) | | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | | | | A-25 | VII.F3.3-
a | Piping, piping components, piping elements, and tanks | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | | | | #### F4. DIESEL GENERATOR BUILDING VENTILATION SYSTEM # Systems, Structures, and Components This section comprises the diesel generator building ventilation system (with warm moist air as the normal environment), which contains ducts, piping and fittings, equipment frames and housings, flexible collars and seals, and heating and cooling air handlers. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the diesel generator building ventilation system are governed by Group C Quality Standards. With respect to seals, these items are to be addressed consistent with the NRC position on consumables, provided in the NRC letter from Christopher I. Grimes to Douglas J. Walters of NEI, dated March 10, 2000. Specifically, components that function as system seals are typically replaced based on performance or condition monitoring that identifies whether these components are at the end of their qualified lives and may be excluded, on a plant-specific basis, from an aging management review under 10 CFR 54.21(a)(1)(ii). The application is to identify the standards that are relied on for replacement as part of the methodology description, for example, NFPA standards for fire protection equipment. Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. ## **System Interfaces** The system that interfaces with the diesel generator building system is the auxiliary and radwaste area ventilation system (VII.F2). The cooling coils receive their cooling water from other systems, such as the hot water heating system or the chilled water cooling system. | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------------------|----------------|--|---------------------|--|----------------------------|---|-----------------------| | ∖-10 | VII.F4.1-
a | Ducting and components external surfaces | Steel | Air – indoor
uncontrolled
(External) | | A plant-specific aging management program is to be evaluated. | Yes, plant specific | | ∖-14 | VII.F4.1-
a | Ducting and components internal surfaces | Galvanized
steel | Condensation
(Internal) | | A plant-specific aging management program is to be evaluated. | Yes, plant specific | | 80-4 | VII.F4.1-
a | Ducting and components internal surfaces | Steel | Air – indoor
uncontrolled
(Internal) | | A plant-specific aging management program is to be evaluated. | Yes, plant specific | | \ -13 | VII.F4.1-
a | Ducting and components internal surfaces | Steel | Condensation
(Internal) | | A plant-specific aging management program is to be evaluated. | Yes, plant specific | | \ -36 | VII.F4.1-
b | Elastomer seals
and
components | Elastomers | Air – indoor
uncontrolled
(External) | | A plant-specific aging management program is to be evaluated. | Yes, plant specific | | A-73 | VII.F4.1- | Elastomer seals
and
components | Elastomers | Air – indoor
uncontrolled
(External) | | A plant-specific aging management program is to be evaluated. | Yes, plant specific | | A-18 | VII.F4.1-
c | Elastomer seals and components | Elastomers | Air – indoor
uncontrolled
(Internal) | | A plant-specific aging management program is to be evaluated. | Yes, plant specific | | F4 | Diesel Gene | erator Building Ve | entilation Syste | m | | | | |-------|----------------|---|-------------------------|---|--|---|------------------------| | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | | A-17 | VII.F4.1-
b | Elastomer seals
and
components | Elastomers | Air – indoor
uncontrolled
>35°C (>95°F)
(Internal) | | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | AP-24 | AP-24 | Heat exchanger
shell side
components
including tubes | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle Cooling
Water System" | No | | AP-12 | AP-12 | | Copper alloy
<15% Zn | Closed cycle cooling water | Loss of material/
pitting and crevice
corrosion | Chapter XI.M21, "Closed-Cycle Cooling Water System" | No | | A-46 | VII.F4.2-
a | | Copper alloy
>15% Zn | Condensation
(External) | Loss of material/
pitting and crevice
corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-25 | VII.F4.3-
a | Piping, piping components, piping elements, and tanks | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle Cooling
Water System" | No | This Page Intentionally Left Blank #### G. FIRE PROTECTION # Systems, Structures, and Components This section comprises the fire protection systems for both boiling water reactors (BWRs) and pressurized water reactors (PWRs), which consist of several Class 1 structures, mechanical systems, and electrical components. The Class 1 structures include the intake structure, the turbine building, the auxiliary building, the diesel generator building, and the primary containment. Structural components include fire barrier walls, ceilings, floors, fire doors, and penetration seals. Mechanical systems include the high pressure service water system, the reactor coolant pump oil collect system, and the diesel fire system. Mechanical components include piping and fittings, filters, fire hydrants, mulsifiers, pumps, sprinklers, strainers, and valves (including containment isolation valves). Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all of the mechanical components are governed by Group C Quality Standards. With respect to filters, seals, portable fire extinguishers, and fire hoses, these items are to be addressed consistent with the NRC position on consumables, provided in the NRC letter from Christopher I. Grimes to Douglas J. Walters of NEI, dated March 10, 2000. Specifically, components that function as system filters, seals, portable fire extinguishers, and fire hoses are typically replaced based on
performance or condition monitoring that identifies whether these components are at the end of their qualified lives and may be excluded, on a plant-specific basis, from an aging management review under 10 CFR 54.21(a)(1)(ii). The application is to identify the standards that are relied on for replacement as part of the methodology description, for example, NFPA standards for fire protection equipment. Pump and valve internals perform their intended functions with moving parts or with a change in configuration, or are subject to replacement based on qualified life or specified time period. Accordingly, they are not subject to an aging management review, pursuant to 10 CFR 54.21(a)(1). Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. ## **System Interfaces** The systems and structures that interface with the fire protection system include various Class 1 structures and component supports (III.A and III.B), the electrical components (VI.A and VI.B), the closed-cycle cooling water system (VII.C2), and the diesel fuel oil system (VII.H1). | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |------|---|--|-------------------------|------------------------------|--|--|-----------------------| | A-19 | | Fire barrier penetration seals | Elastomers | Air – indoor
uncontrolled | Increased hardness,
shrinkage and loss
of strength/
weathering | Chapter XI.M26, "Fire Protection" | No | | A-20 | | | Elastomers | Air – outdoor | Increased hardness,
shrinkage and loss
of strength/
weathering | Chapter XI.M26, "Fire Protection" | No | | A-21 | VII.G.1-d
VII.G.3-d
VII.G.5-c
VII.G.2-d
VII.G.4-d | | Steel | Air – indoor
uncontrolled | Loss of material/
wear | Chapter XI.M26, "Fire Protection" | No | | A-22 | VII.G.1-d
VII.G.2-d
VII.G.3-d
VII.G.4-d | | Steel | Air – outdoor | Loss of material/
wear | Chapter XI.M26, "Fire Protection" | No | | A-45 | VII.G.6-
b | Piping, piping components, and piping elements | Copper alloy
<15% Zn | Raw water | Loss of material/
pitting, crevice,
microbiologically
influenced corrosion
and macrofouling/
biofouling | Chapter XI.M27, "Fire Water
System" | No | | A-47 | VII.G.6-
b | Piping, piping components, and piping elements | Copper alloy
>15% Zn | Raw water | Macrofouling/ biofouling and loss of material/ pitting and crevice corrosion, and selective leaching | Chapter XI.M27, "Fire Water
System" and Chapter XI.M33,
"Selective Leaching of Materials". | No | | VII
G | AUXILIAF
Fire Prote | RY SYSTE ection | MS | | | |----------|------------------------|-----------------|-----|--|--| | | | | - 4 | | | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |-------|---------------|--|---------------------|-----------------|--|--|-----------------------------| | AP-29 | AP-29 | Piping, piping components, and piping elements | Gray cast iron | Raw water | Loss of material/
selective leaching | Chapter XI.M33, "Selective
Leaching of Materials". | No | | A-55 | | Piping, piping
components,
and piping
elements | Stainless steel | Raw water | Loss of material/ pitting, crevice, microbiologically influenced corrosion and macrofouling/ biofouling | Chapter XI.M27, "Fire Water
System" | No | | A-28 | VII.G.8-
a | Piping, piping components, and piping elements | Steel | Fuel oil | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M26, "Fire Protection,"
and Chapter XI.M30, "Fuel Oil
Chemistry" | No | | A-33 | | Piping, piping components, and piping elements | Steel | Raw water | Loss of material/
general, pitting,
crevice,
microbiologically
influenced corrosion
and macrofouling/
biofouling | Chapter XI.M27, "Fire Water
System" | No | | A-83 | VII.G.7-
b | Reactor
coolant pump
oil collection
system
Piping, tubing,
valve bodies | Steel, copper alloy | Lubricating oil | Loss of material/
general, galvanic,
pitting and crevice
corrosion | A plant specific aging management program that monitors the degradation of the components is to be evaluated. See Chapter XI.M32, "One-Time Inspection," for an acceptable verification program. | of aging effection is to be | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | | Further
Evaluation | |------|---------------|---|------------------------|------------------------------|---|--|-----------------------| | A-82 | VII.G.7-
a | Reactor
coolant pump
oil collection
system
Tank | Steel | Lubricating oil | Loss of material/
general, pitting and
crevice corrosion | thickness of the lower portion of the | of aging effects | | A-90 | VII.G.3-b | barriers – walls
ceilings and | Reinforced
concrete | Air – indoor
uncontrolled | Concrete cracking and spalling/ freeze-thaw, aggressive chemical attack, and reaction with aggregates | | No | | A-91 | VII.G.4-c | barriers – walls
ceilings and | Reinforced
concrete | Air – indoor
uncontrolled | Loss of material/
corrosion of
embedded steel | Chapter XI.M26, "Fire Protection"
and Chapter XI.S6, "Structures
Monitoring Program" | No | | A-92 | VII.G.4-b | barriers – walls
ceilings and | Reinforced
concrete | Air – outdoor | Concrete cracking and spalling/ freeze-thaw, aggressive chemical attack, and reaction with aggregates | Chapter XI.M26, "Fire Protection"
and Chapter XI.S6, "Structures
Monitoring Program" | No | | A-93 | VII.G.3-c | Structural fire
barriers – walls
ceilings and
floors | Reinforced
concrete | Air – outdoor | Loss of material/
corrosion of
embedded steel | Chapter XI.M26, "Fire Protection"
and Chapter XI.S6, "Structures
Monitoring Program" | No | #### H1. DIESEL FUEL OIL SYSTEM # Systems, Structures, and Components This section comprise the diesel fuel oil system, which consists of aboveground and underground piping, valves, pumps, and tanks. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the diesel fuel oil system are governed by Group C Quality Standards. Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. #### System Interfaces The systems that interface with the diesel fuel oil system are the fire protection (VII.G) and emergency diesel generator systems (VII.H2). | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |------|----------------|---|---|-----------------------------|--|---|---| | A-24 | VII.H1.1-a | Piping, piping
components,
and piping
elements | Steel | Air – outdoor
(External) | Loss of material/
general, pitting and
crevice corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-30 | VII.H1.4-
a | Piping, piping components, and piping elements | Steel | Fuel oil | Loss of material/
general, pitting,
crevice,
microbiologically
influenced corrosion
and macrofouling/
biofouling | Chapter XI.M30, "Fuel Oil Chemistry" The AMP is to be augmented by verifying the effectiveness of fuel oil chemistry control. See Chapter XI.M32, "One-Time Inspection," for an acceptable verification program. | Yes,
detection of
aging effects is
to be evaluated
| | A-01 | VII.H1.1-
b | Piping, piping components, and piping elements | Steel (with or without coating or wrapping) | Soil | Loss of material/
general, pitting,
crevice, and
microbiologically
influenced corrosion | Chapter XI.M28, "Buried Piping and Tanks Surveillance," or Chapter XI.M34, "Buried Piping and Tanks Inspection" | No Yes, detection of aging effects and operating experience are to be further evaluated | | A-95 | VII.H1.4-
b | Tank | Steel | Air – outdoor
(External) | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M29, "Aboveground Steel Tanks" | No | #### **H2. EMERGENCY DIESEL GENERATOR SYSTEM** ## Systems, Structures, and Components This section comprises the emergency diesel generator system, which contains piping, valves, filters, mufflers, strainers, and tanks. Based on Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water, Steam, and Radioactive-Waste-Containing Components of Nuclear Power Plants," all components that comprise the emergency diesel generator system are governed by Group C Quality Standards. With respect to filters, these items are to be addressed consistent with the NRC position on consumables, provided in the NRC letter from Christopher I. Grimes to Douglas J. Walters of NEI, dated March 10, 2000. Specifically, components that function as system filters are typically replaced based on performance or condition monitoring that identifies whether these components are at the end of their qualified lives and may be excluded, on a plant-specific basis, from an aging management review under 10 CFR 54.21(a)(1)(ii). The application is to identify the standards that are relied on for replacement as part of the methodology description, for example, NFPA standards for fire protection equipment. Aging management programs for the degradation of external surfaces of components and miscellaneous bolting are included in VII.I. Common miscellaneous material environment combinations where there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation are included in VII.J. The system piping includes all pipe sizes, including instrument piping. ## **System Interfaces** The systems that interface with the emergency diesel generator system include the diesel fuel oil system (VII.H1), the closed-cycle cooling water system (VII.C2) and, for some plants, the open-cycle cooling water system (VII.C1). A-30 VII.H2.5-Piping, piping components, and piping elements Steel Fuel oil | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|------|--|---------------------------|-----------------|--|---|------------------------| | AP-33 | | Diesel engine
exhaust
Piping, piping
components,
and piping
elements | Stainless
steel | Diesel exhaust | Cracking/stress
corrosion cracking | A plant-specific aging management program is to be evaluated | Yes, plant
specific | | A-27 | а | Diesel engine
exhaust
Piping, piping
components,
and piping
elements | Steel;
stainless steel | Diesel Exhaust | Loss of material/
general (steel only),
pitting and crevice
corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | AP-30 | | Diesel engine lubricating oil subsystem Piping, piping components and piping elements | Steel | Lubricating oil | Loss of material/
general, pitting and
crevice corrosion | A plant-specific aging management program is to be evaluated | Yes, plant
specific | Loss of material/ microbiologically influenced corrosion and macrofouling/ general, pitting, crevice, biofouling Chapter XI.M30, "Fuel Oil The AMP is to be augmented by verifying the effectiveness of fuel oil chemistry control. See Chapter XI.M32, "One-Time Inspection," for an acceptable verification program. Chemistry" Yes, detection of aging effects is to be evaluated | VII
H2 | RY SYSTE
cy Diesel (| MS
Generator Syste | m | | | |-----------|-------------------------|-----------------------|---|--|---| | | | Structuro | | | 1 | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |-------|------------|---|---------------------------------------|----------------------------|--|---|------------------------| | A-23 | VII.H2.2-a | Piping, piping components, and piping elements | Steel | Moist air | Loss of material/
general, pitting and
crevice corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant
specific | | A-32 | b | Piping, piping components, and piping elements | Steel | Raw water | Loss of material/
general, pitting,
crevice,
microbiologically
influenced corrosion
and macrofouling/
biofouling | Chapter XI.M20, "Open-Cycle
Cooling Water System" | No | | AP-25 | | Piping, piping components, and piping elements | Steel with internal lining or coating | Raw water | Loss of material/
lining or coating
degradation | Chapter XI.M20, "Open-Cycle
Cooling Water System" | No | | A-25 | а | Piping, piping components, piping elements, and tanks | Steel | Closed cycle cooling water | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M21, "Closed-Cycle
Cooling Water System" | No | This Page Intentionally Left Blank #### I. EXTERNAL SURFACES OF COMPONENTS AND MISCELLANEOUS BOLTING # Systems, Structures, and Components This section includes the aging management programs for the external surfaces of all carbon steel structures and components including closure boltings in the Auxiliary Systems in pressurized water reactors (PWRs) and boiling water reactors (BWRs). For the carbon steel components in PWRs, this section addresses only boric acid corrosion of external surface as a result of the dripping borated water that is leaking from an adjacent PWR component. Boric acid corrosion can also occur for carbon steel components containing borated water due to leakage; such components and the related aging management program are covered in the appropriate major plant sections in VII. ### **System Interfaces** The structures and components covered in this section belong to the Auxiliary Systems in PWRs and BWRs. (For example, see System Interfaces in VII.A1 to VII.H2 for details.) | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program
(AMP) | Further
Evaluation | |-------|-----------|----------------------------------|------------------------|--|--|---|-----------------------| | AP-28 | AP-28 | Bolting | Steel | Air – outdoor
(External) | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M18, "Bolting Integrity" | No | | A-102 | VII.I. | Bolting | Steel | Air with borated water leakage | Loss of material/
boric acid corrosion | Chapter XI.M10, "Boric Acid Corrosion" | No | | A-04 | VII.I. | | High strength
steel | Air with steam or water leakage | Cracking/ cyclic
loading, stress
corrosion cracking | Chapter XI.M18, "Bolting Integrity" | No | | AP-26 | AP-26 | Closure bolting | Steel | Air – high
temperature | Loss of preload/
stress relaxation | Chapter XI.M18, "Bolting Integrity" | No | | AP-27 | AP-27 | Closure bolting | Steel | Air – indoor
uncontrolled
(External) | Loss of material/
general, pitting and
crevice corrosion | Chapter XI.M18, "Bolting Integrity" | No | | A-03 | VII.I. | Closure bolting | Steel | Air with steam or water leakage | Loss of material/
general corrosion | Chapter XI.M18, "Bolting Integrity" | No | | A-77 | VII.I.1-b | External surfaces | Steel | Air – indoor
uncontrolled
(External) | Loss of material/
General corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant specific | | A-78 | VII.I.1-b | External surfaces | Steel | Air – outdoor
(External) | Loss of material/
General corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant specific | | A-79 | VII.I.1-a | External surfaces | Steel | Air with borated water leakage | Loss of material/
boric acid corrosion | Chapter XI.M10, "Boric Acid Corrosion" | No | | A-81 | VII.I.1-b | External surfaces | Steel | Condensation (External) | Loss of material/
General corrosion | A plant-specific aging management program is to be evaluated. | Yes, plant specific | #### J. COMMON MISCELLANEOUS MATERIAL ENVIRONMENT COMBINATIONS # Systems, Structures, and Components This section includes the aging management programs for miscellaneous material-environment combinations which may be found throughout the auxiliary system's structures and components. For the material-environment combinations in this part, there are no aging effects which are expected to degrade the ability of the structure or component from performing its intended function for the extended period of operation, and, therefore, no resulting aging management programs for these structures and components are required. ### **System Interfaces** The structures and components covered in this
section belong to the auxiliary systems in PWRs and BWRs. (For example, see System Interfaces in VII.A to VII.I for details.) | ltem | Link | Structure
and/or
Component | Material | | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|-------|--|---------------------------------------|--|----------------------------|--------------------------------|-----------------------| | AP-7 | AP-7 | Piping, piping components, and piping elements | Cast
austenitic
stainless steel | Air – indoor
uncontrolled
(External) | None | None | No | | 4P-8 | AP-8 | Piping, piping components, and piping elements | Copper alloy | Dried Air | None | None | No | | AP-9 | AP-9 | Piping, piping components, and piping elements | Copper alloy | Gas | None | None | No | | AP-10 | AP-10 | Piping, piping components, and piping elements | Copper alloy | Lubricating oil (no
water pooling) | None | None | No | | AP-11 | AP-11 | Piping, piping components, and piping elements | 1 1 1 | Air with borated
water leakage | None | None | No | | AP-13 | AP-13 | Piping, piping components, and piping elements | Galvanized
steel | Air – indoor
uncontrolled | None | None | No | | AP-14 | AP-14 | Piping, piping components, and piping elements | Glass | Air – indoor
uncontrolled
(External) | None | None | No | | VII | AUXILIARY SYSTEMS | |-----|--| | J | Common Miscellaneous Material Environment Combinations | | Item | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|-------|--|-----------------|--|----------------------------|--------------------------------|-----------------------| | AP-15 | AP-15 | Piping, piping components, and piping elements | Glass | Lubricating oil | None | None | No | | AP-16 | AP-16 | Piping, piping components, and piping elements | Nickel alloy | Air – indoor
uncontrolled
(External) | None | None | No | | AP-17 | AP-17 | Piping, piping components, and piping elements | Stainless steel | Air – indoor
uncontrolled
(External) | None | None | No | | AP-18 | AP-18 | Piping, piping components, and piping elements | | Air with borated
water leakage | None | None | No | | AP-19 | AP-19 | Piping, piping components, and piping elements | Stainless steel | Concrete | None | None | No | | AP-20 | AP-20 | Piping, piping components, and piping elements | Stainless steel | Dried Air | None | None | No | | AP-22 | AP-22 | Piping, piping components, and piping elements | Stainless steel | Gas | None | None | No | | ltem | Link | Structure
and/or
Component | Material | Environment | Aging Effect/
Mechanism | Aging Management Program (AMP) | Further
Evaluation | |-------|-------|--|----------------|--|----------------------------|--------------------------------|-----------------------| | AP-21 | AP-21 | Piping, piping components, and piping elements | Stainless stee | Lubricating oil (no
water pooling) | None | None | No | | AP-23 | AP-23 | Piping, piping components, and piping elements | Stainless stee | Treated borated water | None | None | No | | AP-2 | AP-2 | Piping, piping components, and piping elements | Steel | Air – indoor
controlled
(External) | None | None | No | | AP-3 | AP-3 | Piping, piping components, and piping elements | Steel | Concrete | None | None | No | | AP-4 | AP-4 | Piping, piping components, and piping elements | Steel | Dried Air | None | None | No | | AP-6 | AP-6 | Piping, piping components, and piping elements | Steel | Gas | None | None | No | | AP-5 | AP-5 | Piping, piping components, and piping elements | Steel | Lubricating oil (no water pooling) | None | None | No | This Page Intentionally Left Blank